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Fast photochemical oxidation of proteins (FPOP) is a MS-
based method that has proved useful in studies of protein struc-
tures, interactions, conformations, and protein folding. The
success of this method relies on the irreversible labeling of sol-
vent-exposed amino acid side chains by hydroxyl radicals. FPOP
generates these radicals through laser-induced photolysis of
hydrogen peroxide. The data obtained provide residue-level res-
olution of protein structures and interactions on the microsec-
ond timescale, enabling investigations of fast processes such as
protein folding and weak protein–protein interactions. An
extensive comparison between FPOP and other footprinting
techniques gives insight on their complementarity as well as the
robustness of FPOP to provide unique structural information
once unattainable. The versatility of this method is evidenced by
both the heterogeneity of samples that can be analyzed by FPOP
and the myriad of applications for which the method has been
successfully used: from proteins of varying size to intact cells.
This review discusses the wide applications of this technique
and highlights its high potential. Applications including, but
not limited to, protein folding, membrane proteins, structure
elucidation, and epitope mapping are showcased. Further-
more, the use of FPOP has been extended to probing proteins
in cells and in vivo. These promising developments are also
presented herein.

A fundamental understanding of how a given protein func-
tions generally requires a detailed characterization of its under-
lying structure and dynamics. This entails a comprehensive
description of a protein’s conformation and interactions. In
recent years, mass spectrometry (MS)-based methods have
been increasingly used to study protein structure. Methods
such as native MS, ion-mobility spectrometry, chemical cross-
linking, and others have been used to study a wide variety of
protein systems, including membrane proteins, in various lev-
els of complexity, including in vitro, in cells, in tissue, and in
vivo (1–7). These methods, which have been reviewed else-
where (8), fill a gap in analysis of proteins that are difficult to
study by crystallography and NMR. Although these methods
cannot provide atomic-level resolution, the use of MS as the

analytical readout has several advantages, including the need
for only microgram quantities of protein as well as the ability to
study large proteins and complex samples.

Protein footprinting methods are another constituent of the
MS-based structural biology toolbox. These methods investi-
gate structure and interactions via the covalent labeling of pro-
teins. Liquid chromatography coupled to high-resolution MS
(LC-MS/MS) is used to identify modified amino acids and
quantify the extent of labeling. Since the rise of hydrogen deu-
terium exchange coupled to MS (HDX-MS)2 in the 1990s (9),
MS-based footprinting methods have been increasingly used
for analysis of higher-order structure. In most cases, footprint-
ing reports on the solvent accessibility of amino acid side
chains, which is altered upon ligand binding or changes in con-
formation. The lone exception is HDX-MS, where alterations
in the hydrogen bonding network on the backbone are required
for labeling (10, 11). Coupling of these footprinting methods
with bottom-up proteomics, where proteins are proteolyzed
and the resulting peptides are analyzed by MS, results in local-
ized information on interaction sites and regions of conforma-
tional change. In some cases, residue-level resolution can be
achieved providing higher-resolution structural information
(12–14). Protein footprinting methods have been successfully
used to probe higher-order structure of large proteins such as
antibodies (15–17) and large assemblies (18). In addition, these
methods have been used to study complex systems such as
membrane proteins in detergents (19, 20), micelles (21), nano-
discs (22), viruses (23), and intact cells (24, 25).

One type of footprinting method, hydroxyl radical protein
footprinting (HRPF), utilizes hydroxyl (OH) radicals to oxida-
tively modify the side chains of amino acids. This irreversible
labeling method can modify 19 of 20 amino acids making it a
general labeling strategy (26). Although modifications of �16
Da dominate the HRPF data, there are many other modifica-
tions that amino acids can undergo, including the addition of a
carbonyl group (�14 Da) on several mostly hydrophobic amino
acids and decarboxylation (�30 Da) of the carboxylic acids. The
various modification types by HRPF (Table 1) and the chemis-
try have been reviewed extensively elsewhere (27). Hydroxyl
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radical-based footprinting has been traditionally used for
nucleic acid footprinting. The seminal work by Tullius and
Dombroski (28) used hydroxyl radicals to map the protein
interaction sites of DNA. The method is still used for this appli-
cation as well as for mapping the tertiary structure of RNA (29).
The method was first coupled with MS and applied for protein
footprinting by Chance and co-workers (30 –32), who have
demonstrated its use for mapping protein structure. There are
multiple means to generate hydroxyl radicals for labeling,
including Fenton chemistry (33), radiolysis of water (34), and
electrochemistry (35, 36). These methods label proteins on the
millisecond to second timescale. This laser-based method gen-
erates hydroxyl radicals via photolysis of hydrogen peroxide
(H2O2) labeling proteins on the nanosecond to microsecond
timescale, allowing for the study of interactions with fast off
rates (37, 38). This review will focus on the laser-based HRPF
method of fast photochemical oxidation of proteins (FPOP).

FPOP: a laser-based HRPF method

In FPOP, a flowing solution of protein and H2O2 is irradiated
by an excimer laser at 248 nm to generate hydroxyl radicals (Fig.
1) (38, 39). The laser beam is then focused with convex lenses on
a 150 – 450-�m inner diameter silica tubing that is used as the
flow tube (40). The sample is irradiated through a transparent
window exposed on the coated silica tubing. The flow rate and
laser frequency are coordinated so that each protein molecule is
only irradiated once. After irradiation, the sample is collected
into a tube containing catalase and free methionine in buffer to
quench H2O2 and OH, respectively, thus preventing post-foot-
printing oxidation artifacts from any remaining reactive spe-
cies. To correct for the background oxidation, protein control
samples are introduced into the flow system without laser irra-
diation (40). Performing FPOP under constant flow limits over-
oxidation, which could lead to protein unfolding. A radical
scavenger, most commonly glutamine, is also added to the sam-
ple as another experimental control to prevent over-oxidation.
Based on the reactivity of glutamine with OH, FPOP labels pro-
teins on the microsecond timescale and ensures labeling of the
native state of proteins (41, 42).

FPOP has the ability to report protein transient dynamics,
including fast folding and alterations in side-chain flexibility,
and fast fluctuations upon ligand binding. It has been success-
fully used to identify protein interactions sites and regions of
conformational change (43–45). Protein systems studied by
FPOP vary, including heterogeneity in protein size and sample
complexity. Applications are broad, like epitope mapping (12,
46), identifying lipid-interacting regions in membrane proteins
(22), and the structural reorganization of viral proteins (45).
FPOP has also been applied to the study of intact cells providing
structural information across the proteome (24, 47). Recently,
the use of FPOP-derived data has been implemented in molec-
ular modeling studies demonstrating its potential for de novo
modeling of protein structure (48, 49). These results demon-
strate the efficacy of the method for a variety of applications and
for studying a wide variety of proteins. In this review, we will
highlight the varied applications of FPOP and new develop-
ments in the field.

Comparison of protein footprinting methods used to
study higher-order protein structure

Regarding footprinting, there are several methods that are
currently being used in protein structure studies. They vary
in terms of specificity, reversibility, and timescale of labeling
(Table 2). These differences provide advantages based on the
type of protein system that is being studied. Specific labels such
as N-ethylmaleimide (NEM), which specifically labels cys-
teines, and glycine ethyl ester (GEE), which labels carboxylic
acids, have a significantly reduced complexity in data analysis
because only one or two amino acid types can be modified.
Many cysteines are critical for redox processes, and their activ-
ity strongly depends on their oxidative status (50). NEM has
been successfully used to identify such cysteine residues (51, 52).
GEE modifies carboxylic acids through a 1-ethyl-3-(3-dimeth-
ylaminopropyl)-carbodiimide–mediated coupling reaction (53).
This reaction can lead to relatively rapid and quantitative modifi-
cation of solvent-accessible carboxyl groups under mild condi-
tions. Aspartate and glutamate side chains, often located on the
surface of proteins, play important roles in electrostatic interac-
tions and are essential for enzymatic activities. Because of this, the
GEE coupling reaction has been successfully used in probing the
enzymatic activity of several proteins (54–56). However, the high
specificity of these labeling methods limits their use to proteins
that both contain these specific amino acids and where these
amino acids are involved in the structural/interaction changes
these proteins undergo. In addition, the slow timescale of labeling
reduces their use for weak interacting systems with fast off rates or
fast folding events.

Diethylpyrocarbonate (DEPC), a less specific footprinting
method, labels all nucleophilic residues (57) and can probe up
to 30% of the residues in the average protein. These include His,
Lys, Tyr, Ser, Thr, and Cys residues (58) increasing the use of
the method for a wider variety of proteins. The increased num-
ber of modified residues does increase the complexity of data
analysis but not as extensively as general labeling strategies.
One limitation of this labeling technique is cysteine scrambling.
After labeling, cysteine bonds are typically reduced prior to MS
analysis. This alleviates cysteine residues, which can take the

Table 1
Mass changes of amino acids modified by HRPF with amino acids
listed in order of hydroxyl radical reactivity rates

Side chain Mass change

Cys �48, �32, �16
Met �16, �32, �32
Trp �16, �32, �48, �32
Tyr �16, �32
Phe �16, �32
His �16, �23, �22, �10, �5
Leu �16, �14
Ile �16, �14
Val �16, �14
Pro �16, �14
Arg �16, �14, �43
Lys �16, �14
Glu �16, �14, �30, �44
Gln �16, �14
Asp �16, �30, �44
Asn �16
Ser �16, �2
Thr �16, �2
Ala �16
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label from an originally labeled residue, leading to misinterpre-
tation of the results (58).

In contrast to these methods, HDX-MS and HRPF are
general labeling strategies that can both label multiple amino
acids. HDX-MS has been by far the most widely used method to
study protein structure, dynamics as well as protein–protein,
protein–macromolecule, and protein–ligand interactions. This
method reflects both solvent accessibility and hydrogen bond
network changes with backbone amide hydrogens being inter-
rogated. Under typical experimental conditions, all amino acids
except proline, which does not have an amide hydrogen group,
can be labeled by this method, and all amide hydrogens can be
expected to exchange if not protected by secondary, tertiary, or
quaternary structure. Furthermore, continuous labeling exper-
iments have allowed for probing of conformational dynamics
and structural changes in a time-resolved manner, whether
slow and cooperative (EX1) or fast and stochastic (EX2) (59 –
61). However, the reversible nature of the HDX label is a limi-
tation, and careful experimental conditions have to be used to
limit back exchange prior to MS analysis. Primarily, HDX-MS is
not amenable to the post-labeling sample handling approaches
that are required for proteome-wide studies and therefore
remains most powerful as an in vitro method.

An advantage of the HRPF label is its irreversibilty, which
allows for a more flexible post-labeling sample, such as han-
dling the use of longer chromatographic gradients and the use
of enrichment strategies for complex samples. Another advan-
tage is the microsecond timescale of FPOP labeling, which is

faster than proteins can unfold. Because of the time-scale dif-
ference between FPOP and HDX-MS, FPOP helped identify an
allosteric conformational change that occurred in the loop
region of thrombin, which was not detected by HDX-MS (12).
Like HDX-MS, FPOP has also been utilized for higher-order
structure characterization and is rapidly gaining a reputation as
a complementary approach that combines the possibility of
obtaining information on the residue level and a time resolution
that lies within the timescale of early protein folding events.
The high speed and irreversible character of its labeling makes
FPOP-MS a very powerful tool in the study of the folding and
unfolding events of proteins (62, 63). For example, in 2012,
Stocks et al. (64) published a study on the folding process of
�1-antitrypsin (A1AT), which provided valuable data on the
A1AT folding process. An interesting example of FPOP exper-
iments performed on the sub-second scale with amino acid res-
olution was presented in two different articles by Gross and
co-workers (65, 66). These studies follow the barstar protein-
folding dynamics, which unfolds at 0 °C and folds with a tem-
perature jump (T-jump) (67, 68), which is achieved by the con-
secutive irradiation of two different lasers. The delay between
the two laser pulses is varied to obtain different time points (Fig.
2A). The amount of solvent-accessible residues decreases as the
protein folds and so does the amount of modifications observed
after FPOP (Fig. 2B).

Although FPOP has been successfully used for structural
characterization, it comes with its share of pitfalls such as the
use of specific buffers that must be compatible with OH (i.e.

Figure 1. Scheme of a typical in vitro FPOP setup.
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does not scavenge the radical), extensive post-labeling separa-
tion, and quantitation during analysis. Also, the cost of an exci-
mer laser for H2O2 photolysis can be prohibitive for many labs.
Another limitation of the method is that different amino acids
have different reactivities with hydroxyl radicals (27). Amino
acids are listed in order of reactivity in Table 1 with the most
reactive residue, cysteine, at the top. Because of these differ-
ences, highly-reactive residues such as methionine may be
modified whether they are solvent-accessible or not. Because
the reactivity rates of the amino acids are known, it is possible to
account for these rate differences to calculate a protection fac-
tor (49, 69). Furthermore, analysis of FPOP data are the most
complex of the footprinting methods. Although there have
been advances in analysis software (70 –73) and quantitation
methods (74), the field lags behind HDX-MS where both auto-
mated systems (75) and robust analysis software (76, 77) are
available. Nonetheless, this technique has proved successful in
many broad applications that support its versatility.

Footprinting methods can be used together in a complemen-
tary approach to gain increased structural information. For
example, by using HDX-MS, FPOP, alanine shave mutagenesis
(i.e. mutating potential key residues into alanine to study their
effect on protein structure and functionality), and binding
analytics in tandem, Li et al. (78) reported the identification of
an energetic epitope by determining the interfacial hot spot that
dominates the binding affinity for an anti-interleukin-23 (anti-
IL-23) antibody (Fig. 3). Footprinting results show an overlap of
important epitope regions detected by HDX-MS and FPOP.
These results demonstrate FPOP and HDX-MS are equally use-
ful for epitope structural mapping (78). In additional studies,
FPOP, HDX-MS, and GEE labeling were used in tandem to
demonstrate that the critical binding epitope of the IL-6/IL-R
complex is the short segment 135QNSPAED141. This integrated
approach shows great utility for characterizing proteins and
their complexes and can be applied to assist in optimizing the
design of protein therapeutics (79).

The outlined advantages of FPOP make it capable of standing
alone for many applications. The following sections are focused
on how this unique footprinting method was gradually intro-
duced into areas once lacking detailed structural information.

Applications: FPOP to study membrane proteins

Cellular membranes contain a large number of proteins rep-
resenting �30% of the total proteome (80). Membrane proteins
(MP) are involved in crucial cellular functions, including respi-
ration and signal transduction. MPs are also quite dynamic and
flexible enabling them to perform different tasks with high
efficiency. However, this makes structure determination
challenging (22). Therefore, structural studies have been
limited, especially for those proteins with high molecular
weights and multidomain features (81). Until recently, X-ray
crystallography, HDX, and NMR among others have been
used by structural biologists to make seminal contributions
(82). Where those techniques were lacking, cryo-electron
microscopy (cryo-EM) picked up the slack to gain structural
information of MPs (83).

MS-based methods are being increasingly applied in struc-
tural studies of MPs. Approaches used to study MPs by struc-T
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tural MS have been developed from those utilized to study
water-soluble proteins, but the methods have had to be refined
to overcome challenges unique to MPs such as intrinsic disor-
der, low abundance, heterogeneity, and transiency, but espe-
cially the requirement for solubilization by detergent micelles,
membrane bilayers, or other amphiphiles (83). FPOP followed
by MS detection and quantification is an excellent tool for these
studies and can be used to provide information about struc-
tures, protein complexes, and conformational changes in solu-
tion. FPOP is particularly useful for the study of MPs in differ-
ent amphiphiles. The irreversibility of its label allows the
sample to be processed and to remove the lipids and detergents
that are used to mimic the cell membrane, but are disadvanta-
geous for LC-MS analysis (83). A pioneering study by Pan et al.
(84) first demonstrated that FPOP could provide information
on MP structure within a natural lipid environment. They car-
ried out FPOP labeling of bacteriorhodopsin (bR), a methio-
nine-rich MP. The advantage of studying this protein using
FPOP is that it is highly susceptible to oxidative modifications
due to methionine’s faster reaction rate with hydroxyl radicals

compared with other amino acids (27). This study, together
with a study carried out by Reading (85) (Fig. 4), determined
that methionine oxidation occurred at a higher extent at sol-
vent-accessible sites in bR (Met-32, -68, and -163) but not in
membrane-protected regions (Met-20, -56, -60, -118, -145, and
-209), supporting FPOP’s capacity to study MPs.

Because detergents are a poor mimic of the native bilayer, a
variety of detergent-free methods has been developed to solu-
bilize MPs for biophysical analyses, namely lipid–protein nano-
discs that provide a better mimic of a native environment but
with controllable stoichiometry of target MP. Lu et al. (22)
studied these systems by inserting the light-harvesting complex
2 (LH2) from Rhodobacter sphaeroides into nanodiscs and, with
the use of FPOP, validated the protein was still housed in a
near-native state. Their results suggest a protein’s outer mem-
brane regions are more heavily labeled by hydroxyl radicals
while the regions spanning the lipid bilayer remain protected.
Studying proteins in nanodiscs with FPOP is a practical tactic to
map extra-membrane protein surfaces and elucidate intrinsic
MP topology (22). A different approach that can be used is

Figure 2. A, schematic of the flow system intersected by two laser beams at a window in the tube, as described previously for FPOP. The time between the two
laser pulses is adjustable with the “delay circuit.” B, panels a– e, representative mass spectra of the barstar post-FPOP as a function of the time between the
heating pulse and the FPOP probe. Panel f, mass spectrum of the barstar post-FPOP at room temperature as a control (70). Adapted with permission from Chen
et al. (65).

Figure 3. A, epitope regions determined by FPOP mapped on the crystal structure of IL-23. The p40 domain is shown in purple. The p19 domain is shown in grey.
Region A is shown in red, region B is shown in blue, region C is shown in green. M5 residues are shown in orange. M6 residues are shown in dark grey. M7 residues
are shown in yellow. B, epitope regions determined by FPOP, HDX, and alanine shave mutagenesis as mapped on the linear sequence of the IL-23 p19. Adapted
with permission from Li et al. (78).
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reversed FPOP-MS, which solely measures the remaining
unoxidized peptides because oxidized peptides often represent
only a percentage of the oxidation product pool. The advan-
tages of using this strategy include the simplification of data
analysis due to this subtractive quantitation strategy as well as
its capability to detect low-abundance peptides within mem-
brane complexes. Using this approach, Yao and co-workers (81)
examined nine peptides of cystic fibrosis transmembrane con-
ductance regulator (CFTR) protein within the saponin semi-
permeabilized baby hamster kidney cell membranes (BHK-
wtCFTR). CFTR mutants as the fundamental molecular defects
of cystic fibrosis are currently the primary targets for the devel-
opment of modulating drugs. They determined “structural
marker” peptides that potentially report on the presence of two
channel populations (open and closed) of CFTR within its
native plasma membrane (81).

Significant advances have been made in the study of MPs by
structural MS methods. Rapid developments in instrumenta-
tion and methodologies to date guarantee that MS will remain
an integral component of the structural biology toolkit and
show how MPs perform the vast array of functions and interac-
tions essential for life. The systems described above are tunable
and provide environments analogous to cells, but they may lack
other characteristics of a cellular biological membrane such as
cellular crowding, chaperones, and their local cellular pH.

Recent developments: modeling protein structures with
the aid of FPOP

It is undeniable that the elucidation of proteins and protein
complexes structures would not be feasible without the devel-
opment of molecular modeling (MM). However, contrary to
the methods used in the study of small organic molecules, MM
calculations on proteins cannot always be used on their own
due to the complexity of these systems, and so there is a need to

introduce experimental data in the calculations to obtain accu-
rate results. This information is often taken from CD (86), NMR
(87), HDX (88), and X-ray crystallography (89) experiments,
among others. However, in recent years, FPOP-MS has pro-
vided valuable structural data, which was introduced in MM
calculations furthering the depth of biological interpretation
achieved from FPOP.

In one instance, Poor et al. (45) mapped the folding events of
the paramyxovirus fusion protein, a crucial protein in the infec-
tion mechanism of the Paramyxoviridae family. They did so by
using the atomic structures of pre- and postfusion states of a
variant of the F protein made with an AMBER platform. For this
large and highly hydrophobic protein, FPOP provided higher-
resolution dynamic structural information that could be
obtained with NMR or HDX-MS due to the size and glycosyla-
tion of the protein, making FPOP an interesting tool for the
broader scientific community.

In 2015, FPOP data were first used as restraints in MD sim-
ulations to determine the structure of an early folding interme-
diate of barstar by Heinkel and Gsponer (90). They used FPOP
restraints to back-calculate experimental � values. These val-
ues are related to changes in the free energy of denaturation and
account for the total native bonds for every residue environ-
ment, with � � 1 corresponding to the native structure. There-
fore, they analyzed whether � values and FPOP data could be
used together to generate a structure where FPOP would
improve the structural description of a folding intermediate
state. Structures obtained using � values exclusively were too
compact and in poor agreement with the experimental �-Tan-
ford value, which is an index of the compactness of the struc-
tures. The reason behind this effect is that � values are calcu-
lated based on the amount of native contacts present in the
structure only, allowing for nonnative contacts to form artifi-

Figure 4. Footprinting MS of a membrane protein within a native environment using the FPOP method. A, typical workflow for membrane protein
FPOP-MS within a native cellular environment. B, FPOP-MS of bR within its native purple membrane revealed that the extent of methionine (Met/M) residue
oxidation correlates with the solvent accessibility and topology of the native bacteriorhodopsin structure. Adapted with permission from Reading (85).
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cially on structures with a � value smaller than 1, which will
tend to conserve the compactness. In contrast, FPOP restraints
are calculated with respect to a solvent-accessible surface area
(SASA) and thus disfavor any type of interaction. Therefore,
FPOP and � data combined gave structures that are in much
better agreement with the experimental �-Tanford values for
barstar.

FPOP data also proved to be helpful on the determination of
the binding site between a model heparin fragment and an HIV
antigen using computational docking (91). This study carried
out by Misra et al. (91) represents a step forward toward the
exploration of new therapeutic avenues to stop or reduce HIV
infection. More recently, Xie et al. (49) developed a workflow
that successfully demonstrated a correlation between experi-
mental FPOP data and calculated SASA values. As explained in
their study, to convert high-resolution HRPF data into qualita-
tive measurements of protein topography, there are four factors
to take into account: 1) apparent oxidation rates must be accu-
rately measured at the amino acid level; 2) oxidation must be
normalized by the radical concentration and scavenging prop-
erties of the solution; 3) the inherent reactivity of the different
amino acids must be accounted for; and 4) a quantitative rela-
tionship between normalized amino acid reactivity and SASA
must be established. This workflow proved to be able to differ-
entiate between low and high root-mean-squared deviation
(RMSD) models, which makes it a useful validation tool for
MM.

In a recent study, Aprahamian et al. (48) compiled a set of
four soluble proteins with known crystal structures (calmodu-

lin, myoglobin, lysozyme, and cytochrome c) and generated a
decoy set of 20,000 structures for each protein, which served as
a benchmark to compare the structure prediction capabilities
of Rosetta in the absence of FPOP-labeling data. The generated
structures were scored using the Rosetta energy function, and
scores versus RSMD to the native protein were generated (Fig.
5). Protein models were then rescored by adding a term to
Rosetta’s function that was developed to introduce FPOP label-
ing information. As a result, new top-scoring structures were
obtained, which present smaller values of RSMD, including
near-atomic resolution models for myoglobin and cytochrome
c. This is the first method to incorporate experimental HRF/
FPOP-labeling data in protein structure prediction. These
studies demonstrate the potential of FPOP as a valuable
method for the development of more accurate MM predictions
with a broad application field.

Outlook: development of new footprinting methods and
in vivo footprinting

The expansion of FPOP in the last decade has caught the
attention of a broad community of scientists due to its relative
simplicity. The versatility of this technique has led to the explo-
ration of more complex biological systems previously out of its
regime. Improvements to the current platform and conditions
are being implemented to integrate FPOP to a broader number
of studies. For instance, change in the oxidizing reagent might
be beneficial for some applications. Although OH radicals have
proved to be an excellent reagent to perform FPOP, there is an
extensive universe of precursor molecules that produce radicals

Figure 5. A, Rosetta score versus RMSD to the native structure plots for 20,000 models generated using Rosetta ab initio for each of the four benchmark proteins.
The top-scoring model is represented as a star on each plot. B, top-scoring models from the Rosetta score versus RMSD distributions in A (color) superimposed
on the respective native model (gray). C, Rosetta score � hrf_ms_labeling versus RMSD to the native structure plots for each of the four benchmark proteins after
rescoring with the new score term. The top-scoring model is represented as a star on each plot. D, top-scoring models from the Rosetta score � hrf_ms_labeling
rescoring distributions in C (color) superimposed on the respective native model (gray). Reprinted from Ref. 48.
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after irradiation followed by homolytic dissociation, which
augurs great possibilities for future development of footprint-
ing on the FPOP platform. The efficiency of different footprint-
ing species like sulfate radical anion (92), iodine radical (93),
carbenes (94), and trifluoromethyl radicals (95) were also intro-
duced on a FPOP platform, projecting them as interesting can-
didates for protein-structure studies. Trifluoromethylation
presents some further advantages because it can label amino
acids embedded in membranes, and modifications can be
detected not only by MS but also by 19F NMR. The develop-
ment of new reagents for use on the FPOP platform will further
broaden the application of laser-based footprinting.

One factor that may limit the widespread adoption of FPOP
is the treatment of the data. Because there are many factors that
scavenge the radical prior to protein labeling, including metal
ion chelators and reducing agents, a measure of a radical dose in
each experiment would be beneficial. Dosimetry measure-
ments also consider the differences in laser energy between
both intra- and inter-day experiments. A few approaches have
been used to measure a radical dose, including using adenine as
a dosimeter with UV absorption detection (96), derivatized
phenylalanine with isotope dilution GC/MS detection (97), and
a reporter peptide that does not require additional detection
(98). An adoption of one dosimetry method across all FPOP
labs would better standardize the method and make it more
widely applicable. The method would also benefit from a robust
data analysis platform for both increasing sequence coverage of
modified residues and quantitation. The multiple modification
types that result from FPOP increase the complexity of identi-
fication of modified residues, which is imperative for residue-
level structural information. Currently, in many proteomics-
based labs and centers, tools such as high-resolution MS hybrid
instruments, nanoflow chromatography, automated LC-MS
peak detection and alignment software, and Mascot error-tol-
erant search capabilities can be utilized in combination with
each other to enhance the depth of information obtained. The
methodology can be adapted to target any protein-footprinting

strategy that imparts stable covalent modifications, and it is
well-suited to hydroxyl radical footprinting studies (70). An
accessible standard data analysis platform would be beneficial
for the use of this method. Although this issue is being
addressed, this has not halted the growth and utilization of the
technique in even more complex systems.

Recently, an appealing advancement of FPOP points to its
potential in studying protein systems in the native cellular envi-
ronment and in an animal model for human disease. Because of
the impact of macromolecular crowding on protein interac-
tions, it is vital to study proteins in their native cellular environ-
ment. FPOP has been further extended for in-cell analysis to
gain structural information across the proteome. In-cell FPOP
(IC-FPOP) can provide insight into ligand- induced structural
changes or conformational changes accompanying protein
complex formation, all within the cellular context. Hydrogen
peroxide readily crosses cellular membranes, and IC-FPOP has
been successfully applied to Vero cells to oxidatively modify
several proteins within the cell (24). Proteins can be modified in
various organelles, including the nucleus and endoplasmic
reticulum increasing the utility of the method for studying a
wide variety of proteins regardless of their cellular location.
Critical to the success of IC-FPOP was the development of a
single-cell flow system (Fig. 6) (47). Hydrodynamic focusing
drives the cells along in a single file keeping the cells from
clumping to ensure equal exposure to laser irradiation. Because
the cells have endogenous catalase, the H2O2 and cells are
infused separately to limit H2O2 degradation. The use of the
single-cell flow system led to a 13-fold increase in the number
of oxidatively-modified proteins without compromising the
dynamic range of the method (47). FPOP also currently shows
great promise for in vivo applications in Caenorhabditis elegans
(99). These worms are members of the nematode family and
have been used extensively as model systems for human dis-
eases such as a cancer, aging, and diabetes (100). C. elegans are
transparent to laser irradiation and can ingest H2O2 as well as
take it up through their skin. Espino and Jones (99) have

Figure 6. Scheme of a typical in-cell FPOP setup.
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extended FPOP modification conditions to successfully oxida-
tively modify hundreds of proteins within various biological
systems in these organisms, including the nervous, digestive,
and muscular systems. This method, entitled in vivo FPOP (IV-
FPOP), measures solvent accessibility inside the worm similar
to in vitro and IC-FPOP.

The potential of IC-FPOP is its use for proteome-wide
structural biology. The ability to report on thousands of pro-
teins in a single experiment along with the fast-labeling tim-
escale extends the applicability of FPOP for studying protein
conformational and interaction changes in signaling cas-
cades, cellular stress responses, and other biological pro-
cesses. Because of its ability to provide biophysical informa-
tion on many proteins across the proteome, IC-FPOP also
has potential as a tool for systems biology. In addition, the
method also has the capability to study protein folding in the
native cellular environment considering the effect of chap-
erones and other cellular effects. IV-FPOP has the added
potential to study conformations and interactions in an ani-
mal model for human disease. Using C. elegans as a model
system for IV-FPOP allows for the study of various disease
states, including those in developmental biology because
C. elegans are widely used for studying development.

Conclusions

This review presents advantages, limitations, and varied
applications of the MS-based structural footprinting method
FPOP. FPOP provides the unique capability to obtain residue-
level resolution data on protein structures and interactions on
the microsecond timescale putting in the regime of fast pro-
cesses such as protein folding and weak interactions with fast
off rates. In addition, the method has been extended for in-cell
and in vivo analysis making it useful for structural studies across
the proteome. Additional development of this technique will
further advance the method as a key tool in structural MS-
based proteomics in the near future.
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